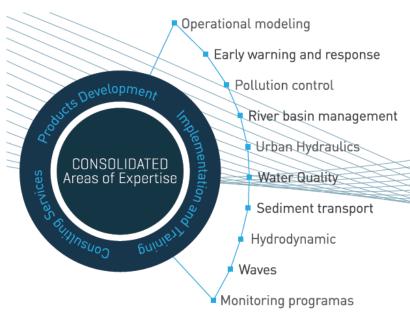


AMOS

Advanced Meteo-Oceanografic Forecasting Services for Sea

HIDROMOD's profile


eea grants

HIDROMOD is an international company acting in the areas of:

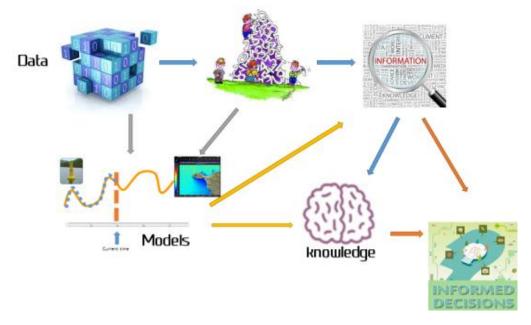
- ✓ Consultancy: Whole water cycle and information technologies
- ✓ Products: Real time data and modeling integration
- ✓ Services: Forecast systems, Early warning systems, Professional support (e.g. *Portugal*, *Spain*, *France*, *Brazil*, *Argentina*, *Colombia*, *Malaysia*, *Oman*)

Main characteristics:

- ✓ High qualified staff with several Ph.D. and Ms.C.
- ✓ Over 450 projects in the last 24 years
- ✓ 1/3 R&D Projects

AMOS Project

- AMOS is focused in the implementation of New Service Capabilities for Integrated and Advanced Meteo-Oceanographic forecasts
- AMOS provides new tools which enable to fully exploit the synergies between forecasts and data acquired through different sources, different platforms and at different scales
- AMOS is built upon IWA awarded AQUASAFE platform which integrates modelling tools, advanced data analysis systems and automatic reporting capabilities



AMOS benefits

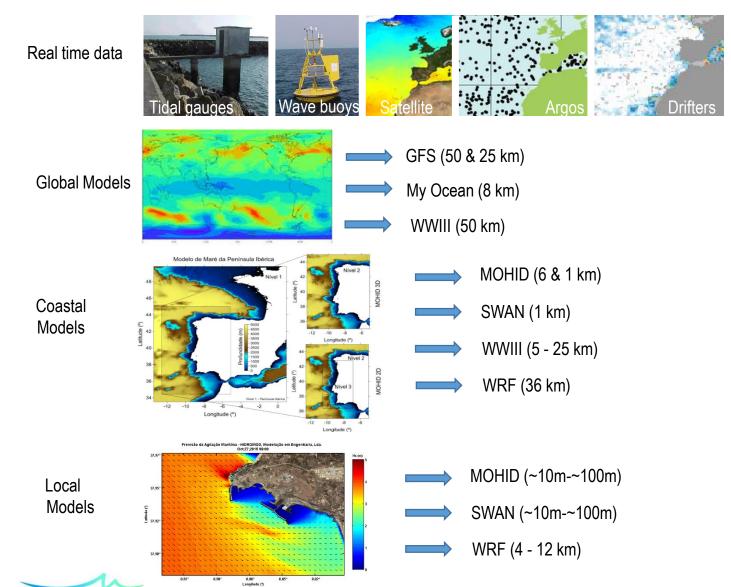
AMOS promotes the focus on **prevention** making use of advanced **data mining** and **modelling** tools;

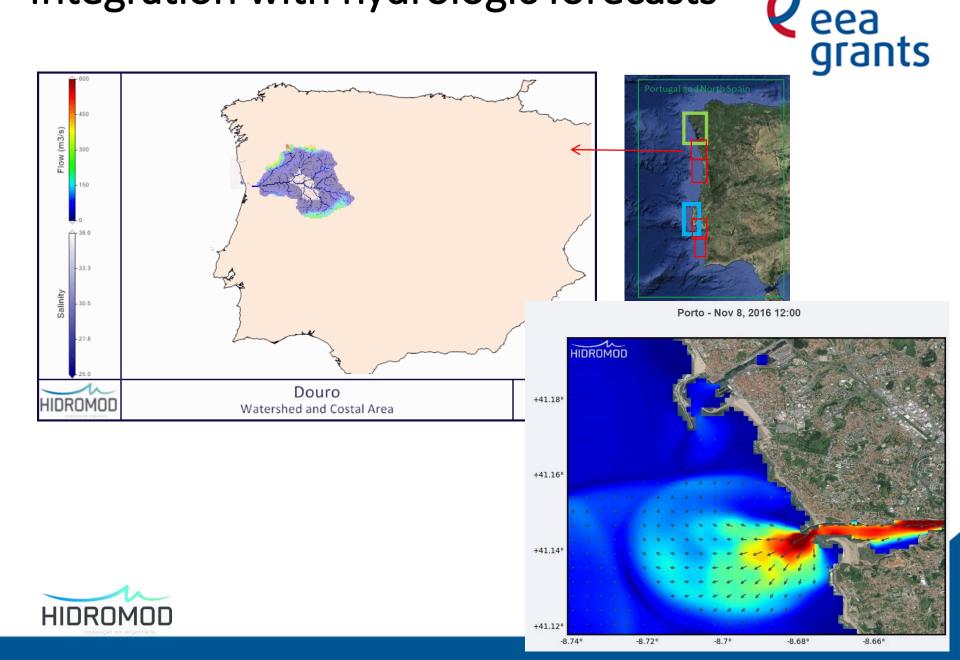
Use of intelligence in order to improve knowledge, optimize operations, anticipate problematic situations and provide early warning

a full integrated service

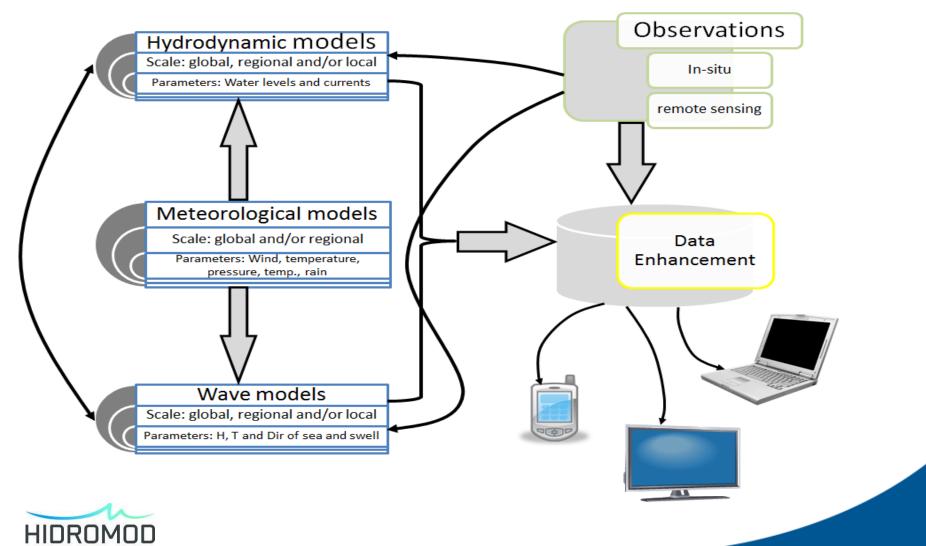
Linking together meteo-oceanographic data

To provide operational services to diferente users

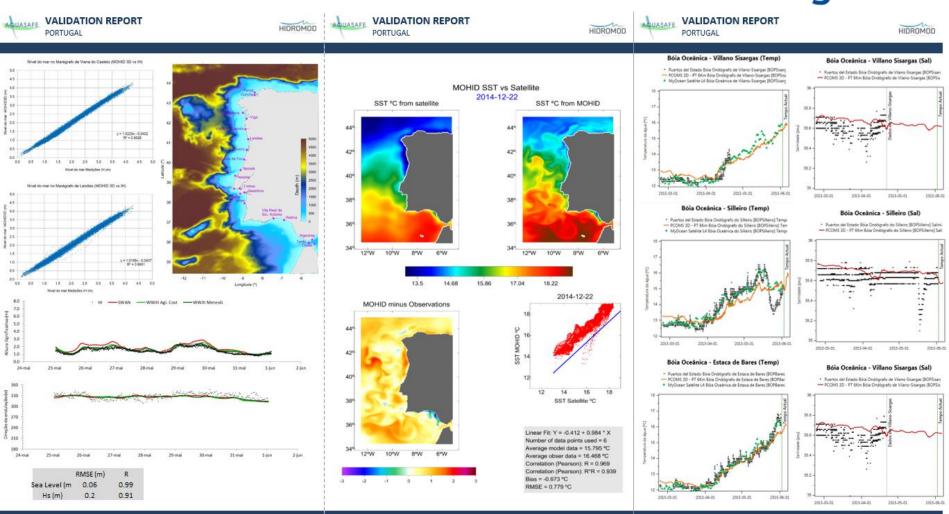



From global to regional to local

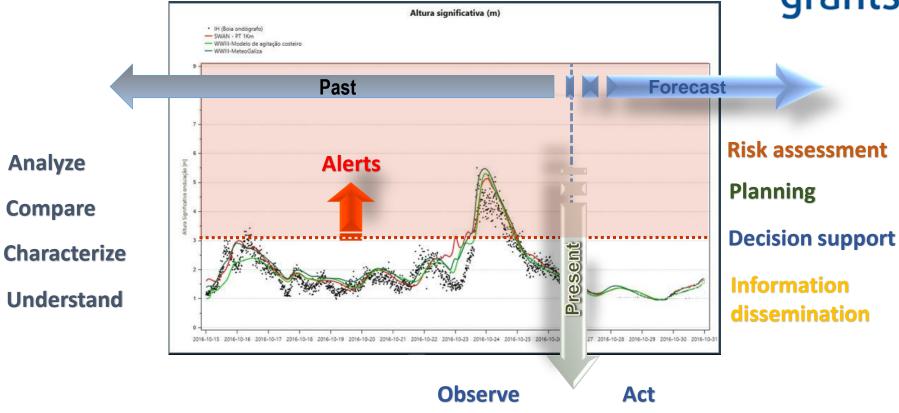
eea grants

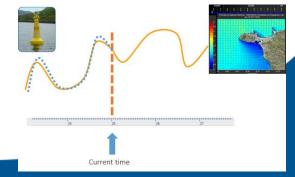

Integration with hydrologic forecasts

ICELAND LIECHTENSTEIN

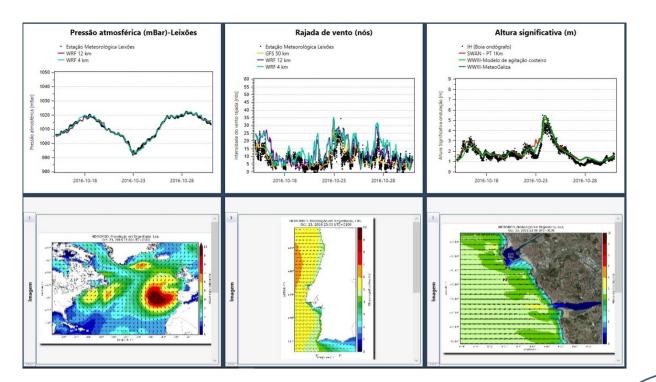

Information flux

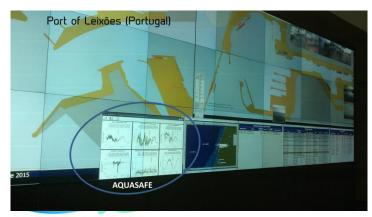
Models validation

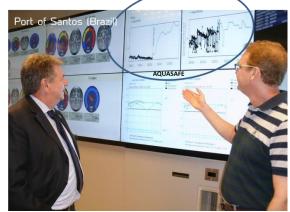


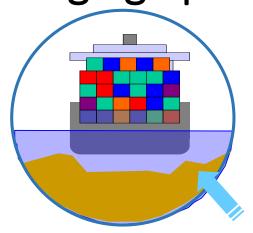


Learn with the past to prevent the future






Real time operation


Focus on critical points and keep watching for critical situations

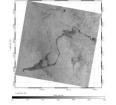
Dredging optimization

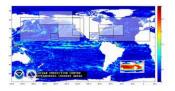


Use real time data and forecasts of

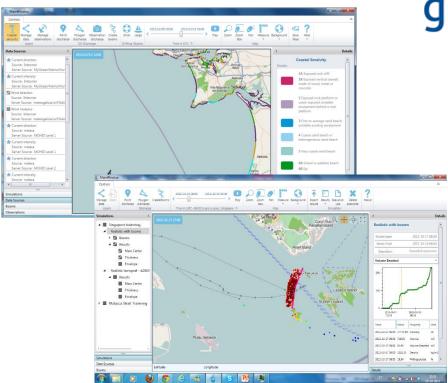
- Wind
 - Waves -
- Water level
- Currents
 - Up to date bathymetry




To provide **Dynamic Under Keel Clearance Information**



Marine pollution prevention and response



Observations (e.g. SAR/EMSA)

Forecasts (wind, currents, waves)

Coastal sensitivity

Shp kml

Daily Reports

TABELA DE PREVISÕES

08/11/2016

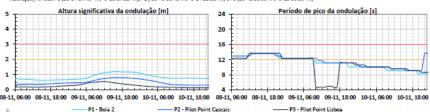
Previsões oceanográficas e meteorológicas para Lisboa

1. GENERALIDADES

Tabela de previsões para o Porto de Lisboa do dia 08-11-2016 para o período de 08-11-2016 06:00 a 10-11-2016 23:00.

A seguinte tabela apresenta previsões de agitação marítima para locais de controlo para a navegação no Porto de Lisboa, previsões meteorológicas na margem Norte e Sul do Tejo, previsões de maré no local do marégrafo de Lisboa (Terreiro do Paço) e as horas de nascer e pôr do sol para os próximos três dias.

3. AGITAÇÃO MARÍTIMA



Propriedade	Nível de alerta	ID
Altura significativa da ondulação (m)	2	
Período de pico da ondulação (s)	12 (para Hs>=1 m)	
Altura significativa da ondulação (m)	3	
Período de pico da ondulação (s)	16 (para Hs>=1 m)	

		_																		_														_
Local			terça-feira, 08-11-2016														quarta-feira, 09-11-2016																	
Data/I	ata/Hora 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23										00	01	02	03	04	05	06	07	08	09	10	11	12	13	14									
	Dir	-	>	->	-	->	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	→	-	\rightarrow	-	-	-
P1	Hs	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.9	1.0	1.0	1.1	1.1	1.1	1.2
	Тр	12.3	12.3	12.3	12.3	12.3	12.3	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	11.1	11.1	11.1	11.1	11.1
	Dir	_	7	~	^	^	7	1	1	7	1	7	7	7	7	7	7	7	7	7	7	^	^	7	^	^	^	>	^	^	^	^	^	1
P2	Hs	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8
	Тр	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.0	13.0	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	11.7	11.7	11.1	11.1
	Dir	_	7	7	^	^	^	7	7	~	7	7	~	7	7	~	1	1	7	_	1	1	^	7	^	^	^	^	^	^	^	^	^	1
Р3	Hs	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Тр	12.3	12.3	12.3	12.3	12.3	12.3	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	4.7	4.7	4.7	4.7	5.0

Local	Local quarta-feira, 09-11-2016									quinta-feira, 10-11-2016																								
Data/	Hora	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Dir	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-		-	-	-	-	->	-	7	->	-
P1	Hs	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.0	1.0	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.7
	Тр	11.1	11.1	11.1	11.1	11.1	11.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	9.6	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	8.2	8.2	8.2	8.2
	Dir	7	7	1	7	7	7	1	7	7	7	7	7	7	7	7	1	1	7	7	1	7	1	~	1	^	Х	1	7	7	^	1	1	7
P2	Hs	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	Тр	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	10.6	10.6	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	9.6	9.6	9.6	9.6	9.6	9.1	9.1	9.1	9.1	9.1	9.1	13.6	13.6
	Dir	7	7	7	^	7	7	7	7	7	7	7	7	7	^	7	7	7	7	7	7	7	^	^	~	^	7	7	^	7	7	^	7	7
P3	Hs	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	Тр	5.0	4.7	4.7	11.1	11.1	11.1	11.1	11.1	11.1	10.6	10.6	10.6	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	9.6	9.6	9.6	9.6	9.6	9.6	9.1	9.1	9.1	9.1	8.7	8.7	8.7

Previsões da direção média (Dir), altura significativa (Hs, em metros) e período de pico (Tp, em segundos) da ondulação do modelo de agitação marítima SWAN (200 m de resolução) no local P1 (38°37'17.40" N / 9°23'17.32"W); P2 (38°40'59.41"N / 9°24'28.82"W) e P3 (38°41'30.00"N / 9°13'60.00"W)

(Silves)	Dir. Vento (*)	٠.	*	Mr.	W.	W	N.	K	W-	- *	- 3	7	7	,	,	,	,								
GFS 50 km	Vel. Vento (nós)	12	12	12	10	10	10	8	8	8	9	9	9	12	12	12	10	10	10	9	9	9	11	11	11
(Sines)	Dir. Vento (°)	-	-	-	-	-	-	1	1	1	7	>	>	>	>	>	1	>	1	7	7	-	→	→	-
Tabela de maré* (Marégrafo)	Nível do mar (m)	2.31	2.55	2.68	2.64	2.46	2.17	1.84	1.56	1.38	1.34	1.43	1.65	1.95	2.24	2.47	2.57	2.52	2.33	2.05	1.76	1.54	1.43	1.46	1.6
MOHID (Marégrafo)	Nível do mar (m)	2.48	2.74	2.89	2.88	2.71	2.41	2.04	1.70	1.46	1.39	1.48	1.69	2.00	2.34	2.58	2.72	2.70	2.53	2.23	1.88	1.63	1.49	1.52	1.7
	Hs (m)	1.2	1.2	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1
wwiii	Dir. Ondas (°)	7	7	7	7	7	7	>	>	>	>	>	>	>	>	>	>	>	7	7	7	7	7	7	~
(Boia ondógrafo)	Tp (s)	8	8	8	8	8	8	8	8	8	8	13	13	13	13	13	13	13	12	12	12	12	12	12	12
	Pw (kw/m)	5	5	5	4	4	4	4	4	3	3	5	5	5	6	6	6	6	6	6	6	6	6	6	6
	Hs (m)	1.4	1.3	1.3	1.2	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.5
SWAN	Dir. Ondas (°)	У.	7	7	>	>	1	1	>	>	>	>	>	>	>	7	>	7	7	7	7	7	7	7	>
(Boia ondógrafo)	Tp (s)	9	9	9	9	8	8	8	8	8	8	14	14	14	14	14	14	14	12	12	12	12	12	12	12
	Pw (kw/m)	7	7	6	5	5	4	4	4	4	4	6	6	6	6	6	6	6	6	7	8	9	10	11	11
	Hs (m)	1.3	1.3	1.2	1.1	1.1	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.4	1.4
SWAN	Dir. Ondas (°)	\ \	>	>	>	>	>	>	>	>	>	>	>	>	>	7	>	7	7	7	7	>	7	7	>
(P1 - Aproximação de Sines)	Tp (s)	9	8	8	8	8	8	8	8	8	14	14	14	14	14	14	14	14	12	12	12	12	12	12	12
	Pw (kw/m)	7	6	5	5	4	4	4	4	3	5	5	5	6	6	6	6	6	6	7	7	8	9	10	11
	Hs (m)	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9
SWAN	Dir. Ondas (°)	-	-	-	-	-	1	→	-	-	->	-	-	→	-	-	-	-	-	-	_	-	-	-	-
(P2 - Entrada Baía de Sines)	Tp (s)	12	12	12	12	12	12	12	12	14	14	14	14	14	14	14	14	14	12	12	12	12	12	12	12
	Pw (kw/m)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	3	3	4	4	5
	Hs (m)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8

Vel. e Dir. Vento - Velocidade e direção do vento

Dir. Ondas (°)

Tp(s)

(P3 - Molhe Sul de Sines)

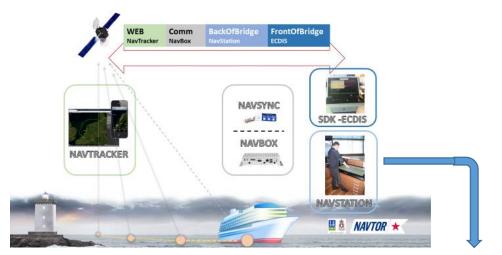
AQUASAFE

Tabela de níveis de alerta nos pontos de referência para a navegação no Porto de Sines Criado a: 08-11-2016 07:25 Início: 08-11-2016 06:00 Fim: 09-11-2016 05:00

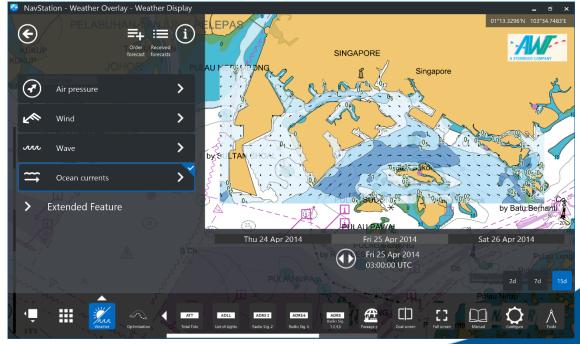
ICELAND LIECHTENSTEIN NORWAY

eea grants

Relatório automático produzido pela plataforma AQUASAFE


Hs - Altura significativa da ondulação

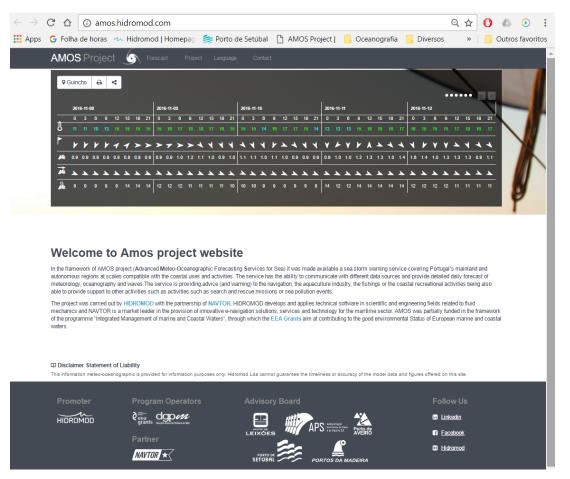
Tp - Período de pico da ondulação


Dir. Ondas - Direção da ondulação Pw - Potência da ondulação

On board high resolution information

Navstation

Information any time any where



com base na plataforma AQUASAFE

Web clients

http://amos.hidromod.com/

http://portosetubal.azurewebsites.net

To conclude...

AMOS provides:

- A versatile service capable to adapt to specific requests of different users
- A unique access point to different meteorological and oceanographic data sources and forecasts
- High resolution meteorological and oceanographic forecasts providing reliable information on the required locations and with the required time and space scales
- Automatic reports and alerts personalized according the users requests
- Support to marine pollution prevention and response actions and search and rescue missions
- Continuous models validation results (check of forecasts level of confidence)

Aditional Information

www.hidromod.com

http://amos.hidromod.com/

